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1. Introduction

Lagrangian theories with higher order derivatives are plagued by several problems within

quantum theory. The common wisdom is that one either has an energy with no ground

level or unphysical ghosts in the spectrum. (However, ways out have been suggested [1,

2].) We expect the situation for higher order gauge theories to be better. Particularly

for reparametrization invariant theories with a vanishing Hamiltonian. Indeed, recently

Savvidy [3] (see also [4 – 6]) has e.g. given a higher order string model which at least at

the free level seems to lead to a consistent quantum theory. In a recent paper [7] we have

together with Per Salomonson given a higher order model for a free infinite spin particle

from Wigner’s continuous spin representation which we believe should be consistent at the

quantum level. Although it remains a lot to do it seems as if there is still hope for the

possibility of a fully fledged consistent interacting higher order quantum theory.

In [7] we derived a higher order particle model from Wigner’s continuous spin repre-

sentation, also called the infinite spin representation or Wigner’s Ξ-representation [8 – 10].

(The continuous spin representation is also considered in [5, 11 – 13].) By means of the

standard Ostrogradski method [14] we constructed a Hamiltonian formulation by means of

which we quantized the theory by a generalized Gupta-Bleuler method. However, although

the result contained fields with arbitrary large spins it was not so easily interpreted due

to the presence of a dynamical einbein variable. Here we show that this Gupta-Bleuler

method is inconsistent with a uniqueness condition proposed here. Instead we give what

we think is the correct, consistent covariant quantization.

In this communication we also throw more light on the quantization procedure of

higher order (gauge) theories in general. In order to quantize a higher order Lagrangian

theory we must at present be able to reformulate it as a standard Hamilton (Dirac) theory.

Ostrogradski’s old method [14] is the standard procedure and is best formulated as a

procedure to rewrite the higher order Lagrangian by means of auxiliary variables introduced

by means of Lagrange multipliers [15, 16]. This equivalent first order Lagrangian may then

be transformed into a Hamiltonian formulation in the usual sense, or to be more precise in

the sense of Dirac’s treatment of singular Lagrangians [17]. It has been pointed out that

this procedure may be applied to any higher order Lagrangian, regular or singular [18].

This is true. However, this procedure is ambiguous since a higher order Lagrangian may

be rewritten as a first order one by means of auxiliary variables that may be defined in

many different ways. In particular, we are not bound to follow Ostrogradski’s suggestion.

(An early general departure is given in [19].) For the higher order infinite spin particle

model we explicitly construct an infinite set of different first order Lagrangians in this way.

Although the corresponding Hamiltonian formulations are different they are all consistent

with Wigner’s continuous spin representation. However, their differences imply in principle

different quantizations. In fact, for the infinite spin particle we find that the Gupta-

Bleuler method used for the Ostrogradski formulation in [7] does not apply to the other

formulations. Instead, we give here a consistent solution for a Dirac quantization which

yields the same physical result for all formulations considered. Classically the different

Hamiltonian formulations are related by canonical transformations and are equivalent.
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We also formulate a general procedure to derive the gauge invariances of higher order

gauge theories by means of the inverse Noether theorem. This procedure is based on

a Hamiltonian formulation (cf [20]) and for the infinite spin particle model we explicitly

demonstrate that the same result is obtained irrespective of which Hamiltonian formulation

is used.

We also propose a new higher order particle model consistent with the reducible,

massless higher spin representation. We analyze its constraint structure and derive its

gauge invariances as well as propose a covariant quantization.

In appendix A we also analyze the classical properties of a related rigid particle

model [21] which we also covariantly quantize in the text. In appendix B we finally formu-

late our classical procedures and quantum conditions in more general terms.

2. Generalized derivation of the higher order model for the infinite spin

particle

When Wigner [8, 9] classified representations of the Poincaré group, he investigated the

two Poincaré invariants pµpµ and wµwµ where wµ is the Pauli-Lubanski vector defined by

wµ ≡ 1

2
εµνρσmνρpσ, (2.1)

where mµν and pµ are the Poincaré generators and εµνρσ the totally antisymmetric tensor.

If pµ is the four momentum of the particle, pµpµ is minus the mass squared (p2 = −m2)

for our choice of spacelike Minkowski metric. For irreducible representations we have then

w2 = m2s(s + 1), where s is the spin of the particle. For massless particles Wigner showed

that apart from the natural representations, p2 = w2 = 0, there are representations for

which p2 = 0 but w2 = Ξ2, where Ξ is a real, positive constant. These representations were

called the continuous spin representation in [9] and the infinite spin representation in [10].

Wigner showed that it contains all helicities from −∞ to ∞. In [9] two representations

were given in terms of covariant field equations: one for integer spins denoted 0(Ξ), and

one for half-odd integer spins denoted 0′(Ξ).

Wigner’s Ξ-representation is a massless representation with p2 = 0 and wµwµ = Ξ2.

In quantum theory these constraints may be formulated in terms of operators acting on a

physical state |phys〉 as follows (Dirac quantization)

p2|phys〉 = 0,

(wµwµ − Ξ2)|phys〉 = 0. (2.2)

Following Wigner we let the particle be described in terms of the coordinates xµ with

conjugate momenta pµ, and an internal vector ξµ with conjugate momenta πµ. These

coordinates obey the commutation relations (the non-zero part):

[xµ, pν ] = iδµ
ν , [ξµ, πν ] = iδµ

ν . (2.3)

In [7, 9, 10] the conditions in (2.2) were solved by means of two minimal sets of elemen-

tary constraints. They are χi|phys〉 = 0, ∀i = 1, 2, 3, 4, where either (the notation is in
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accordance with [7] except for the sign of χ3 in (2.4))

χ1 =
1

2
p2, χ2 =

1

2

(

π2 − F 2
)

,

χ3 = −p · π, χ4 = p · ξ − Ξ

F
. (2.4)

or

χ1 =
1

2
p2, χ2 =

1

2

(

ξ2 − F 2
)

,

χ3 = p · ξ, χ4 = p · π − Ξ

F
. (2.5)

F is a non-zero real constant (It may also be an operator commuting with xµ, pµ, ξµ, πµ.

See next section.)

In [7] the expressions in (2.4) and (2.5) were used to construct reparametrization invari-

ant models for the infinite spin particle through the following ansatz for the Hamiltonian:

H = λ1χ1 + λ2χ2 + λ3χ3 + λ4χ4, (2.6)

where λi are Lagrange multipliers and χi are the classical expressions of (2.4) or (2.5).

The coordinates and momenta are then treated as classical variables satisfying the Poisson

bracket relations

{xµ, pν} = δµ
ν , {ξµ, πν} = δµ

ν . (2.7)

In [7] it was then discovered that the corresponding Lagrangians to (2.6) (see below)

are different for the choices (2.4) and (2.5) unless the model is embedded into a higher

order theory. This ambiguity is even larger than what follows from (2.4) and (2.5). In fact,

the most general solutions of (2.2) in terms of a minimal set of quadratic constraints are

given by the following constraint variables:

χ1 =
1

2
p2, χ2 =

1

2

(

(aξ − bπ)2 − F 2
)

,

χ3 = p · (aξ − bπ), χ4 =

{

1
a
(p · π) − Ξ

F
, (a 6= 0),

1
b
(p · ξ) − Ξ

F
, (b 6= 0),

(2.8)

where a, b, and F are arbitrary real constants (a 6= 0 and/or b 6= 0; F 6= 0). The choices

(2.4) and (2.5) are the special cases a = 0, b = 1 and a = 1, b = 0 in (2.8). Notice that

the constraint variables in (2.8) satisfy the following Lie algebra in terms of the Poisson

bracket (2.7) (we give only the non-zero expressions):

{χ2, χ4} = χ3, {χ3, χ4} = 2χ1. (2.9)

It follows that the Hamiltonian theory defined by (2.6) is a gauge theory even for the

general choice (2.8). Since (2.6) implies that the Hamiltonian is zero this theory is also

reparametrization invariant. Furthermore, it is Poincaré invariant since χi in (2.8) are

Poincaré invariant (Lorentz’ indices are contracted and xµ is not involved in χi). Due to
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the parameter dependence in (2.8) we have really an infinite set of theories parametrized

by a, b, and F .

The general form (2.8) may also be understood in another way. If we perform the

canonical transformation

ξµ → aξµ − bπµ, πµ → cξµ − dπµ, (2.10)

where c and d are real additional constants satisfying the condition

bc − ad = 1, (2.11)

and then insert this transformation into (2.5) we obtain (2.8) apart from χ4. Instead of χ4

we find

χ′
4 =

{

χ4 + c
a
χ3,

χ4 + d
b
χ3,

(2.12)

depending on whether a or b is nonzero (c and d are arbitrary in (2.12) since (2.11) only

determines one of the parameters c and d.) Now the Lie algebra of {χi} and {χ1,2,3, χ
′
4}

are identical which means that χ4 in (2.8) may be replaced by χ′
4 in (2.12) without altering

neither the gauge structure nor the involved constraints.

The constant F in (2.8) may also be set to one by means of the following canonical

transformations:

ξµ→Fξµ, πµ→
1

F
πµ; λ2→

1

F 2
λ2, λ3→

1

F
λ3, λ4→Fλ4, (2.13)

accompanied by the redefinition b→F 2b. Notice that the total Hamiltonian also involves

the conjugate momenta to the Lagrange multipliers λi.

The Lagrangian corresponding to (2.6) for whatever choices of χi is obtained from the

Legendre transformation as usual. Here we have

L = p · ẋ + π · ξ̇ − H. (2.14)

In order to write the Lagrangian in configuration space (i.e. in terms of x and ξ only) we

have to eliminate p and π through their equations of motion. For the general constraints

(2.8) the resulting Lagrangians and their equations of motion will then be parametrized by

a, b, and F . (However, from the above arbitrariness in ξ it is clear that there is no natural

physical argument to view any choice of ξ as a configuration space coordinate.)

Using the general constraints (2.8) we now look for a simpler theory in which the

Hamiltonian does not contain all four constraints as in (2.6). The only condition is that a

Dirac constraint analysis yields the complete set of constraints. Obviously it suffices that

H contains only the constraints χ2 and χ4 since χ̇2 = 0 requires χ3 = 0, and χ̇3 = 0

requires χ1 = 0 through the Poisson bracket relations (2.9). We consider therefore the

simpler ansatz in which the Hamiltonian is given by (2.6) with λ1 = 0 and λ3 = αλ4,

where α is a real constant, and where λ2 6= 0 and λ4 6= 0 (cf [7]). (We could equivalently

set λ3 = 0 and perform the replacement χ4 → χ4 + αχ3 in (2.6) (cf χ′
4 in (2.12)).) By
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means of the constraints (2.8) we find then through (2.14) the Lagrangians (The simplest

Lagrangian is (2.15) for a = 1, b = 0, α = 0, F = 1, which also was given in [5].)

L =
1

Aλ4
ẋ · ξ̇ − 1

2
λ2

(

1

A2

(

b

λ4
ẋ − ξ

)2

− F 2

)

+
λ4

F
Ξ − aα

A
ξ̇ · ξ,

a 6= 0, A =
1

a
− bα, (2.15)

or

L = − 1

αbλ4
ẋ · ξ̇ − 1

2
λ2

1

α2

((

1

λ4
ẋ − 1

b
ξ

)2

− α2F 2

)

+
λ4

F
Ξ +

+

(

a

b
+

1

αb2

)

ξ̇ · ξ, b 6= 0, α 6= 0. (2.16)

Notice that the last term in both (2.15) and (2.16) is a total derivative. Due to the presence

of the parameters these Lagrangians are quite ambiguous. However, this ambiguity is

removed if we eliminate ξ. The equations of motion for ξ yields

ξµ = − A

λ2
∂τ

(

1

λ4
ẋµ

)

+
b

λ4
ẋµ (2.17)

from (2.15), and

ξµ =
αb

λ2
∂τ

(

1

λ4
ẋµ

)

+
b

λ4
ẋµ (2.18)

from (2.16). Inserting (2.17) into (2.15) yields apart from terms which are total derivatives,

L =
1

2λ2

(

∂τ

(

1

λ4
ẋ

))2

+
1

2
λ2 + λ4Ξ, (2.19)

where we also have performed the rescaling, λ2 → λ2/F
2 and λ4 → λ4F , which is what

remains of the transformation (2.13). The same result is obtained when (2.18) is inserted

into (2.16). This generalizes the results of [7] in which we only considered (2.4) and (2.5).

Notice that (2.19) represents a higher order theory. It is reparametrization invariant, and

λ4 represents the einbein variable. A general interpretation seems to be that ξ by itself

is an ambiguous variable and should not be used as a physical variable in a configuration

space Lagrangian. A unique theory is only obtained after ξ is eliminated.

3. Ambiguity in the Hamiltonian formulation

The Lagrangian (2.19) simplifies somewhat if we make use of the inverse einbein variable

e ≡ 1/λ4 instead of λ4 (cf [7]). (2.19) becomes then

L =
1

2λ2

(

ėẋ + eẍ
)2

+
1

2
λ2 +

1

e
Ξ. (3.1)

The equation of motion for λ2 yields

λ2 = ±
√

(

ėẋ + eẍ
)2

, (3.2)

– 6 –
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and when this is inserted into (2.19) (choosing positive sign) we get

L =

√

(

ėẋ + eẍ
)2

+
1

e
Ξ, (3.3)

which is the simplest form of the higher order Lagrangian for the infinite spin particle.

In order to quantize a higher order theory like any of these, we have to consider a

Hamiltonian formulation. The standard way to do this is to make use of Ostrogradski’s

method [14] (see also appendix B). This method requires us to introduce a new variable.

The prescription is

ξµ = ẋµ. (3.4)

(We denote the new variable ξµ although it is different from the ξµ used before for reasons

explained at the end of this section.) This relation may be imposed by means of a Lagrange

multiplier (see appendix B). The Lagrangians above may therefore be written as

L =
1

2λ2

(

ėξ + eξ̇
)2

+
1

2
λ2 +

1

e
Ξ + λ0 · (ẋ − ξ), (3.5)

and

L =

√

(

ėξ + eξ̇
)2

+
1

e
Ξ + λ0 · (ẋ − ξ), (3.6)

where λ0 is the Lagrange multiplier with a vector index. The theories (3.5) and (3.6)

are now standard singular theories allowing for a Hamiltonian formulation. However, the

expressions for the conjugate momenta to λ0 and x are

P(λ)µ = 0, pµ = λ0µ, (3.7)

which are primary, second class constraints which may be trivially eliminated. The mod-

els may therefore equivalently be written as (in agreement with Lanczos’ treatment [15]

(appendix I) )

L =
1

2λ2

(

ėξ + eξ̇
)2

+
1

2
λ2 +

1

e
Ξ + p · (ẋ − ξ), (3.8)

and

L =

√

(

ėξ + eξ̇
)2

+
1

e
Ξ + p · (ẋ − ξ), (3.9)

where the Lagrange multiplier pµ is the conjugate momentum to xµ. (There is, thus, no

need to define what is conjugate to p.) Notice that any Lagrangian of the form

L = λ · ẋ + R(no λ̇ or ẋ) (3.10)

is equivalent to

L = p · ẋ + R(λ → p). (3.11)

– 7 –
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The Hamiltonian formulations of the Lagrangians (3.8) and (3.9) are now straight-

forward. We have the conjugate momenta to ξ and e given by

πµ =
∂L

∂ξ̇µ
=

e

λ2

(

ėξµ + eξ̇µ

)

=
e
(

ėξµ + eξ̇µ

)

√

(

ėξ + eξ̇
)2

,

ω =
∂L

∂ė
=

ξ ·
(

ėξ + eξ̇
)

λ2
=

ξ ·
(

ėξ + eξ̇
)

√

(

ėξ + eξ̇
)2

, (3.12)

and the Hamiltonians

H = p · ẋ + π · ξ + ωė − L

=

{

p · ξ − Ξ
e

+ λ2

2e2 (π2 − e2),

p · ξ − Ξ
e
.

(3.13)

The Lagrangian (3.8) yields the primary constraints

P2 = 0, χ5 = π · ξ − ωe = 0, (3.14)

where P2 is the conjugate momentum to λ2. From (3.9) we find on the other hand the

primary constraints

χ2 =
1

2
(π2 − e2) = 0, χ5 = π · ξ − ωe = 0. (3.15)

Dirac’s consistency conditions yield then the complete set of constraints, χi = 0, where

χ1 =
1

2
p2, χ2 =

1

2

(

π2 − e2
)

, χ3 = −p · π,

χ4 = p · ξ − Ξ

e
, χ5 = π · ξ − ωe, (3.16)

which is consistent with (2.4) for the infinite spin particle. (The Lagrangian (3.8) yields

in addition P2 = 0.) This theory was used as a starting point for the quantization in [7].

Notice that the above models are gauge theories since the Poisson algebra of χ1, . . . , χ5

satisfy a Lie algebra (see [7]).

It is obvious from the way we have obtained the forms (3.8) and (3.9) that Ostrograd-

ski’s formulation is not a unique procedure to rewrite a higher order model as a first order

one. For instance, a much simpler Lagrangian than (3.9) is obtained if we define the new

variable by

ξµ = eẋµ (3.17)

in (3.3). In this case the previous procedure leads to the Lagrangian

L =

√

ξ̇2 +
Ξ

e
+ p ·

(

ẋ − ξ

e

)

, (3.18)
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which also is equivalent to (3.3). This Lagrangian yields the primary constraints

ω = 0, χ2 =
1

2

(

π2 − 1
)

, (3.19)

and the Hamiltonian

H =
1

e

(

p · ξ − Ξ
)

. (3.20)

Dirac’s consistency conditions yield then the constraints in (2.4) with F = 1 together with

the trivial one, ω = 0. Remark: (2.4) with arbitrary F is obtained if we had replaced e by

eF in (3.3). (F was removed by (2.13) in the derivation of (3.3). This we have to undo

(λ4 ≡ 1/e).)

The Hamiltonian formulations of (3.1) and (3.3) are obviously not unique. In fact,

even the models in the previous section may be obtained by rewriting the higher order

models as first order ones. By means of the relation (2.17) for ξ we may rewrite (3.1) or

equivalently (2.19) as follows: (λ0 is a Lagrange multiplier with a vector index)

L =
1

2λ2

(

λ2

A

(

ξ − b

λ4

))2

+
1

2
λ2 + λ4Ξ +

+λ0 ·
(

ξ +
A

λ2
∂τ

(

1

λ4
ẋ

)

− b

λ4
ẋ

)

, (3.21)

which is equivalent to (discarding total derivatives)

L =
λ2

2A2

(

ξ − b

λ4

)2

+
1

2
λ2 + λ4Ξ +

+λ0 · ξ −
A

λ4
∂τ

(

1

λ2
λ0

)

· ẋ − b

λ4
λ0 · ẋ, (3.22)

which does not contain higher derivatives. λ0 may then be removed by means of the

equations of motion for ξ which yields

λµ
0 = −λ2

A

(

ξµ − b

λ4
ẋµ

)

. (3.23)

When this is inserted into (3.22), removing higher derivative terms by partial integration

and then discarding the total derivatives, we end up with (2.15) for F = 1. Arbitrary F is

then obtained by means of the inverse transformation to (2.13). Here we need

ξµ→ 1

F
ξµ, λ2→F 2λ2, λ4→

1

F
λ4, (3.24)

and the redefinitions b→b/F 2, α→F 2α.

Likewise we may make use of (2.18) to rewrite (2.19) as follows:

L =
λ2

2α2

(

1

b
ξ − 1

λ4
ẋ

)2

+
1

2
λ2 + λ4Ξ + λ0 ·

(

∂τ

(

1

λ4
ẋ

)

− λ2

α

(

1

b
ξ − 1

λ4
ẋ

))

, (3.25)

– 9 –
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which is equivalent to (discarding total derivatives)

L =
λ2

2α2

(

1

b
ξ − 1

λ4
ẋ

)2

+
1

2
λ2 + λ4Ξ − 1

λ4
∂τλ0 · ẋ − λ2

α
λ0 ·

(

1

b
ξ − 1

λ4
ẋ

)

. (3.26)

The equation of motion for ξ yields here

λµ
0 =

1

α

(

1

b
ξµ − 1

λ4
ẋµ

)

, (3.27)

which when inserted into (3.26) yields (2.16) for F = 1 apart from terms which are total

derivatives. Arbitrary F is obtained by the transformation (3.24) and the redefinitions

b→b/F 2, α→F 2α.

What we have presented here (and in appendix B) is a considerable generalization of

Ostrogradki’s method. It only requires the new variables to be defined in such a way that

they together with appropriate Lagrange multipliers allow us to rewrite the original higher

order Lagrangian as a Lagrangian with no higher order derivatives.

4. Gauge invariance

The gauge transformations for any specific gauge model may always be obtained by means

of the inverse Noether theorem. Using the Hamiltonian formulation we first make a general

ansatz for the general gauge generator as a linear expression in the first class constraints:

G = αmΦm + βiχi, (4.1)

where Φm = 0 are the primary constraints, and χi = 0 the secondary and higher con-

straints with respect to the corresponding first order Lagrangian. αm and βi are arbitrary

infinitesimal gauge parameter functions. The general condition is

Ġ|Φm=0 = 0, (4.2)

where the time evolution of χi is determined by the total Hamiltonian. The original

Lagrangian is then invariant under the gauge transformations

δF = {F,G}, (4.3)

where all variables not involved in the Lagrangian are removed by their equations of motion

after calculating the Poisson bracket.

By means of this general method it is straight-forward to construct the gauge transfor-

mations of the first order models (3.8), (3.9), (3.18), (2.15) and (2.16). In fact, this general

method also determines the gauge invariances of the equivalent higher order models (2.19),

(3.1) and (3.3) as will be shown in the next section. In the latter case one may start from

any of the first order forms treated here, i.e. one may start from any of its Hamiltonian

formulations.
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4.1 Model (3.8)

Here the above rules yield a general gauge generator which depends on two independent

parameters, β1 and β4. The total Hamiltonian is Htot = H + c2P2 +λ5χ5 where H is given

in (3.13). We have explicitly (λ5 = −ė/e obtained from the equations of motion is inserted.

P2 is the conjugate momentum to λ2.)

G = α2P2 + β1χ1 +

(

1

2e
∂τ (eβ̇1) +

λ2

e2
β4

)

χ2 −

−1

2
β̇1χ3 + β4χ4 + e

(

e∂τ

(

1

e
β4

))

χ5, (4.4)

where χi are given in (3.16), and

α2 =
1

2
∂τ

(

e∂τ (eβ̇1)
)

+ ∂τ (λ2β4). (4.5)

The Lagrangian (3.8) is then invariant under the gauge transformations

δλ2 = α2, δpµ = 0,

δξµ =
1

2
β̇1p

µ +
1

e
(eβ̇4 − ėβ4)ξ

µ +
e

λ2

(

1

2e
∂τ (eβ̇1) +

λ2

e2
β4

)

∂τ (eξ
µ),

δxµ = β1p
µ + β̇1

e

2λ2
∂τ (eξµ) + β4ξ

µ, δe = −e2∂τ

(

1

e
β4

)

, (4.6)

which are obtained from (4.3) using (4.4) and by inserting the equations of motion for π.

4.2 Model (3.9)

With the total Hamiltonian Htot = H + λ2

e2 χ2 + λ5χ5 the general gauge generator is

G = β1χ1 +

(

1

2e
∂τ (eβ̇1) +

λ2

e2
β4

)

χ2 −

−1

2
β̇1χ3 + β4χ4 + e

(

e∂τ (
1

e
β4)

)

χ5, (4.7)

where χi are given in (3.16). The Lagrangian (3.9) is therefore gauge invariant under (4.6)

(without δλ2) with

λ2 =

√

(ėξ + eξ̇)2. (4.8)

4.3 Model (3.18)

For Htot = H + λ2χ2 + cω (ω is the conjugate momentum to e) the above rules yield the

general gauge generator

G = −e2β̇4ω + β1χ1 +

(

1

2
e∂τ (eβ̇1) + λ2β4

)

χ2 −
1

2
eβ̇1χ3 + β4χ4. (4.9)
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where χi are given by (2.4) with F = 1. This implies that the Lagrangian (3.18) is invariant

under (λ2 =

√

ξ̇2 here)

δpµ = 0, δξµ = β4ξ̇
µ +

1

2
eβ̇1p

µ +
1

2
e∂τ (eβ̇1)

ξ̇µ

√

ξ̇2

,

δe = −e2β̇4, δxµ = β1p
µ +

1

2
eβ̇1

ξ̇µ

√

ξ̇2

+ β4ξ
µ. (4.10)

4.4 Model (2.15)

Both models (2.15) and (2.16) have P2 = 0 and P4 = 0 as primary constraints. (Pr is the

conjugate momentum to λr.) χi = 0, i = 1, 2, 3, 4, where χi is given by (2.8) with a 6= 0,

F = 1, and are secondary and higher constraints. The total Hamiltonian for both models is

Htot = λ2χ2 + αλ4χ3 + λ4χ4 + c2P2 + c4P4, (4.11)

where c2 and c4 are arbitrary. The general ansatz (4.1) yields here the gauge generator (β1

and β4 are the independent gauge parameters)

G = β̇2P2 + β̇4P4 + β1χ1 −
1

2λ4
β̇1χ3 + αβ4χ3 + β4χ4, (4.12)

where

β2 ≡ 1

λ4

(

λ2β4 +
1

2
∂τ

(

1

λ4
β̇1

))

. (4.13)

In the model (2.15) χ4 is the first expression in (2.8). Following the rules above we

find therefore that the Lagrangian (2.15) is invariant under

δλ2 = β̇2, δλ4 = β̇4,

δxµ =
β1

A

(

1

λ4
ξ̇µ +

bλ2

Aλ4

(

ξµ − b

λ4
ẋµ

))

− 1

2Aλ4
β̇1

(

ξµ − b

λ4
ẋµ

)

+
β4

λ4
ẋµ,

δξµ =
β4

λ4
ξ̇µ +

b

2Aλ4
∂τ

(

1

λ4
β̇1

)(

b

λ4
ẋµ − ξµ

)

, (4.14)

where β2 is given by (4.13).

4.5 Model (2.16)

The general gauge generator is here given by (4.12) except that χ4 here is given by the last

expression in (2.8). Following the rules above we find therefore that the Lagrangian (2.16)

is invariant under

δλ2 = β̇2, δλ4 = β̇4,

δxµ = − β1

αbλ4
ξ̇µ −

(

β1λ2

α2λ4
+

β̇1

2αλ4

)(

1

λ4
ẋµ − 1

b
ξµ

)

+
β4

λ4
ẋµ,

δξµ = − b

α
β2

(

1

λ4
ẋµ − 1

b
ξµ

)

+
β4

λ4
ξ̇µ +

β4bλ2

αλ4

(

1

λ4
ẋµ − 1

b
ξµ

)

, (4.15)

where β2 is given by (4.13).
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5. Invariant properties of the higher order models of the infinite spin

particle

We give here some of the properties of the equivalent higher order models (2.19), (3.1)

and (3.3). They may be obtained from any of the treated first order forms which we have

considered using the generalized Ostrogradski method as formulated at the end of section 3

or in appendix B.

The four momentum is

pµ = −e∂τ

(

1

λ2
∂τ

(

eẋµ

)

)

(5.1)

for the model (3.1) or identically (2.19) (e ≡ 1/λ4), and

pµ = −e∂τYµ, Yµ ≡ ∂τ

(

eẋµ

)

√

(

∂τ

(

eẋ
))2

(5.2)

for the equivalent model (3.3). These expressions may be obtained from the general formula

pµ =
∂L

∂ẋµ
− ∂τ

∂L

∂ẍµ
. (5.3)

However, the expression (5.1) may also be obtained from (2.15) or (2.16) using the stan-

dard definition pµ = ∂L/∂ẋµ and then inserting the appropriate expression for ξ. The

expressions (5.1) and (5.2) may also be obtained from (3.8), and (3.9), (3.18) respectively

using the equations for ξ and then inserting the appropriate expressions for ξ. (5.2) follows

from (5.1) when one inserts the expression (4.8) for λ2.

The Lagrangians (3.1) and (3.3) yield the equations of motion

ṗµ = 0, ẋ · p − Ξ

e
= 0, (5.4)

from the variations of x and e respectively (p is given by (5.1) or (5.2)). These equations

imply

(ėẋ + eẍ) · p = 0, ⇒ p2 = 0. (5.5)

(In general these equations imply that the particle moves faster than light [7].)

The gauge invariance of the model (3.1) or (2.19) with λ4 = 1/e is obtained from any

of the models (2.15), (2.16) and (3.8) by inserting the appropriate expressions for ξ in the

results (4.14), (4.15) and (4.6). The unique answer is (β4 has to be redefined in (4.6):

β4→eβ4)

δe = −e2β̇4, δλ2 = β̇2, β2 ≡ eλ2β4 +
1

2
e∂τ (eβ̇1),

δxµ = −eβ1∂τ

(

1

λ2
∂τ

(

eẋµ
)

)

+
eβ̇1

2λ2
∂τ

(

eẋµ
)

+ eβ4ẋ
µ. (5.6)

Indeed, we find

δL = ∂τf, f ≡ eβ4L + R(β1),
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R(β1) ≡ 1

4
e∂τ (eβ̇1)(1 − Y 2) +

1

2
e∂τ (eβ̇1)Y

2 − e∂τ (eβ1)Y · ∂τY +

+e2β̇1Y · ∂τY − e2β1Y · ∂2
τ Y +

1

2
e2β1(∂τY )2, Y µ ≡ 1

λ2
∂τ (eẋµ), (5.7)

for the Lagrangian (3.1) using (5.6).

The gauge invariance of the model (3.3) may be obtained from any of the five first

order forms we have considered. The Lagrangian (3.3) is invariant under (β4→eβ4 in the

gauge transformations of the models (3.8) and (3.9))

δxµ = −eβ1∂τY µ +
1

2
eβ̇1Y

µ + β4eẋ
µ, (5.8)

δe = −e2β̇4, (5.9)

where now Y µ is given in (5.2). ((5.9) follows also from (5.6) and (4.8).) Indeed, we find

δL = ∂τf, f ≡ 1

2
e∂τ (eβ1) −

3

2
e2β̇1Y · ∂2

τ Y + eβ4L (5.10)

for the Lagrangian (3.3) using (5.9). The same result is obtained by replacing Y µ in (5.7)

by (5.2).

The invariance which is parametrized by β4 is the reparametrization invariance of the

actions (3.1) and (3.3). Notice that the Lagrangian for the standard free, massive particle,

L =
1

2
eẋ2 − m2

2e

(

∼= −m
√

−ẋ2
)

, (5.11)

is invariant under

δe = −e2β̇4, δxµ = eβ4ẋ
µ → δL = ∂τ (eβ4L). (5.12)

6. A new higher order particle model

In [7] we proposed a Hamiltonian gauge theory for a spinning particle in the standard

massless representation p2 = 0 and w2 = 0. There it was called the extended free Ξ = 0

model, and we did not find any higher order Lagrangian model there. However, now we

have arrived at the following suggestion

L = u

√

(

∂τ

(

eẋ
))2 − u̇

√

(eẋ)2, (6.1)

where u is an additional variable to x and the inverse einbein e. This Lagrangian may

equivalently be written as (the notation is in accordance with [7])

L =
1

2λ2

(

∂τ (eẋ)
)2

+
1

2
λ2u

2 − 1

2λ8
u̇2 − 1

2
λ8(eẋ)2. (6.2)

The equivalence between (6.1) and (6.2) restricts λ2, λ8, u, and u̇ to be e.g. positive since

only then may (6.2) yield the following equations for λ2 and λ8:

λ2 =
1

u

√

(

∂τ (eẋ)
)2

, λ8 =
u̇

√

(eẋ)2
, (6.3)
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which when inserted back into (6.2) reproduces (6.1). Notice that this particle must move

faster than light (see also [7]). However, its exact properties we do not know. The following

formal properties are anyway valid.

The four momentum using the general formula (5.3) acquires the following equivalent

forms from (6.1) and (6.2)

pµ = −e2λ8ẋµ − e∂τ

(

1

λ2
(∂τ (eẋµ)

)

,

pµ = −e∂τ

(

u∂τ (eẋµ)
√

(∂τ (eẋ))2

)

− eu̇ẋµ√
ẋ2

. (6.4)

The Lagrangians (6.1) and (6.2) yield furthermore the equations

ṗµ = 0, ẋ · p = 0, (6.5)

from the variations of x and e. The variation of u yields in addition

∂τ

√

(eẋ)2 −
√

(∂τ (eẋ))2 = 0 ⇔ ∂τ

(

1

λ8
u̇

)

− λ2u = 0. (6.6)

Notice that the equations in (6.5) using the expressions (6.4) imply p2 = 0.

6.1 First order forms

The simplest first order forms of (6.1) and (6.2) are

L = u

√

ξ̇2 − u̇
√

ξ2 + p ·
(

ẋ − 1

e
ξ

)

, (6.7)

and

L = p · (ẋ − 1

e
ξ) +

1

2λ2
ξ̇2 +

1

2
λ2u

2 − 1

2λ8
u̇2 − 1

2
λ8ξ

2. (6.8)

The Hamiltonians from (6.7) and (6.8) are

H =
1

e
p · ξ, H =

1

e
p · ξ + λ2χ2 + λ8χ8, (6.9)

respectively, where

χ2 =
1

2
(π2 − u2), χ8 =

1

2
(ξ2 − P 2

u ). (6.10)

Model (6.7) has the primary constraints ω = 0 (ω is the conjugate momentum to e), χ2 = 0,

and χ8 = 0, and the secondary and higher constraints are

χ1 =
1

2
p2, χ3 = −p · π,

χ4 = p · ξ, χ5 = π · ξ − Puu, (6.11)

Model (6.8) has the primary constraints ω = 0, P2 = 0, and P8 = 0, where ω is the

conjugate momentum to e, and where P2 and P8 are the conjugate momenta to λ2, and

λ8, respectively. The secondary and higher constraints are then (6.10) and (6.11).
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6.2 Gauge invariances

The gauge invariances of the models (6.1) and (6.2) are obtained from the inverse Noether

theorem as formulated in section 4 and appendix B. It suffices to calculate the gauge

invariance of the first order form (6.8). All the other gauge invariances follow then directly.

For (6.8) we make the following ansatz for the general gauge generator

G = αωω + α2P2 + α8P8 + β1χ1 + β2χ2 + β3χ3 + β4χ4 + β5χ5 + β8χ8. (6.12)

The condition Ġ = 0 leaves then only three independent parameters; β1, β4, and β5. For

the other parameters in the ansatz (6.12) we find

αω =
1

2
e3λ8β̇1 − e2β̇4 + eβ5, α2 = β̇2 + 2λ2β5,

α8 = β̇8 − 2λ8β5, β8 =
eλ8

2λ2
∂τ (eβ̇1) + eλ8β4 −

1

λ2
β̇5,

β2 = eλ2β4 +
1

2
e∂τ (eβ̇1), β3 = −1

2
eβ̇1. (6.13)

Following the rules of section 4 and appendix B we find that (6.8) is invariant under

δλ2 = α2, δλ8 = α8, δe =
1

2
e3λ8β̇1 − e2β̇4 + eβ5,

δu =
eu̇

2λ2
∂τ (eβ̇1) + eu̇β4 − uβ5 −

u̇

λ2λ8
β̇5,

δpµ = 0, δξµ =
1

2
eβ̇1p

µ +
e

2λ2
∂τ (eβ̇1)ξ̇

µ + eβ4ξ̇
µ + β5ξ

µ,

δxµ = β1p
µ +

1

2λ2
eβ̇1ξ̇

µ + β4ξ
µ, (6.14)

where α2 and α8 are given in (6.13).

This results implies that (6.2) is invariant under (6.14) removing δpµ and δξµ, and

replacing δxµ by (inserting ξ = eẋ and replacing p by the second equation in (6.4), since

(6.2) does not involve ξ and p)

δxµ = −e2β1λ8ẋ
µ − eβ1∂τ

(

1

λ2
∂τ (eẋ

µ)

)

− 1

2
eβ̇1

1

λ2
∂τ (eẋ

µ) + eβ4ẋ
µ. (6.15)

The result (6.14) also implies that (6.7) is invariant under (6.14) with δλ2, and δλ8

removed, and by inserting the expressions (6.3) in the remaining transformations.

Finally we find that (6.1) is invariant under the following gauge transformations

δxµ = −eβ1

(

∂τ (uY µ) + u̇
ẋµ

√
ẋ2

)

+ eβ4ẋ
µ +

1

2
eβ̇1uY µ,

δe = −e2β̇4 + eβ5 +
1

2
e2u̇

1√
ẋ2

β̇1,

δu = −uβ5 + eβ4u̇ − eu

√
ẋ2

√

(∂τ (eẋ))2
β̇5 +

1

2

eu̇u
√

(∂τ (eẋ))2
∂τ (eβ̇1), (6.16)
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where Y µ = ∂τ (eẋµ)√
(∂τ (eẋ))2

. In fact, we find

δL = ∂τf, f = R(β1) + eβ4L +
e2uẋ2

√

(∂τ (eẋ))2
β̇5,

R(β1) ≡ 3

2
e2u2(∂τY )2β1 + β1u̇

2e2

(

1 +
Y · ẋ√

ẋ2

)

+
e2uu̇ẋ · ∂τY√

ẋ2
β1 −

−1

2
e2uu̇β̇1

(

1 +
Y · ẋ√

ẋ2

)

− 1

2

e2uu̇
√

ẋ2

√

(∂τ (eẋ))2
∂τ (eβ̇1) +

1

2
eu2∂τ (eβ̇1) −

−β1eu∂τ (eu̇) − β1
euu̇√

ẋ2

√

(∂τ (eẋ))2 − β1e
2u∂τ

(

u̇√
ẋ2

)

ẋ · Y. (6.17)

7. Covariant quantizations

That there exist infinitely many different Hamiltonian formulations for a given higher order

Lagrangian of the infinite spin particle has severe implications for the quantization, and

also for the quantization of any higher order model. The ambiguity in the Hamiltonian

formulation should not be reflected in any ambiguity in the quantum theory what regards

its physical results. Thus, firstly, in order to have a unique quantization procedure the

quantum properties most be insensitive to the differences in the Hamiltonian formulations.

For the infinite spin particle this requires the quantum theory to be independent of how

the auxiliary variable is defined and introduced to rewrite the theory as a first order one

with a Hamiltonian formulation. Secondly, the quantum theory is not allowed to depend

on the difference in the gauge algebra in the various Hamiltonian formulations.

7.1 Covariant quantization of the infinite spin particle

In [7] we proposed a Gupta-Bleuler quantization of the constraints obtained from the Os-

trogradski formulation of the higher order model since we did not find any solution to their

Dirac quantization. However, apart from leaving us with difficulties with the interpretation

due to the presence of a dynamical einbein variable, we see now that none of the other

Hamiltonian formulations yield constraints that allow for such a Gupta-Bleuler procedure.

This procedure can therefore not be the right one here. Although the quantization problem

should be analysed within the general BRST quantization we show below that a simple

Dirac quantization has a consistent solution after all.

7.1.1 Covariant quantization within the Ostrogradski formulation

The Ostrogradski formulation of the infinite spin particle model we considered in section 3

and in [7]. The constraints are here given by (3.15) and (3.16). The Dirac quantization

within the wave function representation is then given by the equations:

χ̂iΨ = 0, i = 1, 2, 3, 4, 5, (7.1)

where χ̂i are the corresponding hermitian operator expressions of χi. Explicitly we have

(we prefer to consider the wave function Ψ in momentum space)

p2Ψ(p, e, ξ) = 0,
(

∂2
ξ + e2

)

Ψ(p, e, ξ) = 0, p · ∂ξΨ(p, e, ξ) = 0,

– 17 –



J
H
E
P
0
5
(
2
0
0
6
)
0
1
8

(

p · ξ − Ξ

e

)

Ψ(p, e, ξ) = 0,

(

ξ · ∂ξ − e∂e +
3

2

)

Ψ(p, e, ξ) = 0. (7.2)

The last equation has the solution

Ψ(p, e, ξ) = e
3

2 Φ(p, eξ). (7.3)

In [7] we showed that there is no solution of (7.2) which may be Taylor expanded in ξ.

Therefore, we propose now the following solution of the second to last condition in (7.2)

(suggested by the treatment in [13]):

Φ(p, eξ) = δ(ep · ξ − Ξ)φ(p, eξ). (7.4)

Then we try a solution in which φ(p, eξ) may be Taylor expanded in ξ:

φ(p, eξ) =
∑

n

φn(p, eξ), (7.5)

where φn is of order n in powers of ξ with coefficients which are symmetric tensor fields of

order n. We find now (wµ ≡ eξµ)

p2Φ = 0 ⇔ p2φ = 0 ⇔ p2φn = 0 ⇒ φn(p,w) = δ(p2)un(p,w).

(7.6)

p · ∂wΦ = 0 ⇒ p · ∂wφ = 0 ⇔ p · ∂wφn = 0, (7.7)

where the first implication follows due to the factor δ(p2) in (7.6). This condition is

equivalent to the Lorentz’ conditions on the symmetric tensor fields. Finally we have
(

∂2
w + 1

)

Φ = 0 ⇒
(

∂2
w + 1

)

φ = 0, (7.8)

since

∂2
w

(

δ(p · w − Ξ)φ

)

= δ′′p2φ + 2δ′p · ∂wφ + δ∂2
wφ = δ∂2

wφ (7.9)

due to (7.6) and (7.7). The condition (7.8) is not the conventional traceless conditions for

massless tensor fields. Instead, (7.8) couples all tensor fields to each others which then

seems to be a typical ingredient of the continuous spin representation. (In [13] an explicit

solution of (7.8) is given.)

7.1.2 Covariant quantization within the framework of (3.18)

From the first order form (3.18) we obtain a Hamiltonian formulation with different forms

of the constraints than those from the Ostrogradski formulation. The Dirac quantization

is here given by (7.1) where χ̂i is the corresponding hermitian operators to χi with F = 1

in (2.4) for i = 1, 2, 3, 4, and where χ5 = ω, where ω is the conjugate momentum to e. We

have

ω̂Ψ = −i∂eΨ = 0 ⇒ Ψ(p, e, ξ) = Φ(p, ξ). (7.10)

Obviously χ̂iΦ = 0 are exactly the same equations which Φ(p,w) in (7.3) satisfies. Hence,

the quantizations of (3.6) and (3.18) leads to the same results. Notice that the argument

w in subsection 7.1.1 and ξ here both are equal to eẋ.
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Remark. If we use (2.4) with F arbitrary in the Dirac quantization we get the same

equation with the variable w = Fξ. If we set Φ′(p, ξ) = Φ(p, Fξ) then we get instead of

(7.8)

(

∂2
ξ + F 2

)

Φ′ = 0. (7.11)

Notice that these equations are obtained if we had replaced e by eF in the original action

(3.3). Hence, Fξ is the same physical variable as before (eẋ).

The transition to standard massless higher spin equations are formally obtained in the

limit F→0, Ξ→0 such that Ξ/F→0. (It is obviously singular since Φ′(p, ξ) = Φ(p, Fξ) for

fixed function Φ yields no tensor fields at all.)

7.1.3 Covariant quantization within the framework of (2.15) and (2.16)

The quantizations of the first order forms (2.15) and (2.16) leads to Hamiltonian formula-

tions with the constraints (2.8) and ω = 0. However, since we have shown in section 2 that

(2.8) is canonically equivalent to (2.4) up to terms that the Dirac quantization is insensitive

to, we obtain here a solution which is unitary equivalent to the previous one Φ(p,w).

7.2 Covariant quantization of the supersymmetric infinite spin particle model

In section 4 of [7] we constructed a supersymmetric higher order particle model for Wigner’s

Ξ-representation for half-odd integer spins. When formulated as a first order theory in

Ostrogradski form it gives rise to a Hamiltonian theory with seven constraints, namely

those in (3.15) and (3.16), and χ6 = χ7 = 0 where

χ6 ≡ p · ψ, χ7 ≡ π · ψ + eθ, (7.12)

where ψµ and θ are odd Grassmann variables satisfying the Poisson algebra (4.8) in [7].

No consistent Gupta-Bleuler quantization was found in [7]. Here we find a consistent Dirac

quantization in line with the previous treatments. Apart from the conditions (7.1) we have

then also

χ̂6Ψ = 0, χ̂7Ψ = 0, (7.13)

which are equivalent to

p · γΨ = 0, (−iγ · ∂w + ρ)Ψ = 0, (7.14)

where w ≡ eξ and where γµ and ρ are hermitian matrices satisfying the anticommutation

relations

[γµ, γν ]+ = 2ηµν , [ρ, ρ]+ = −2, [ρ, γµ]+ = 0. (7.15)

These matrices must at least be 8×8, which means that Ψ must be an 8-spinor. If we choose

to represent γµ as standard 4 × 4 γ-matrices and Ψ as two 4-spinors, Ψ = (ψ1, ψ2), then

(7.14) may be written as (these equations were also given in [13] derived in a completely

different way)

p · γψ1,2 = 0, (7.16)
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−iγ · ∂wψ1 + ψ2 = 0, −iγ · ∂wψ2 − ψ1 = 0. (7.17)

The solution is given by (7.3), (7.4) and (7.5) where now

φ(p,w) =

(

ψ1(p,w)

ψ2(p,w)

)

. (7.18)

The solution to the Dirac equation (7.16) is

ψ1,2(p,w) = δ(p2)p · γu1,2(p,w), (7.19)

and assuming the Taylor expansions

ψ1,2(p,w) =
∑

n

1

n!
ψ1,2µ1···µn

(p)wµ1 · · ·wµn , (7.20)

we find that (7.17) requires

−iγµψ1µµ1···µn−1
+ ψ2µ1···µn−1

= 0,

−iγµψ2µµ1···µn−1
− ψ1µ1···µn−1

= 0, (7.21)

which is consistent with the condition (7.8).

7.3 Covariant quantization of the spinning particle model of section 6

The covariant Dirac quantization of the spinning particle model in section 6 is given by

the conditions (7.10) and (7.1) for i = 1, 2, 3, 4, 5, 8, where χ̂i here are given by the corre-

sponding hermitian operator expressions of the constraints in (6.10) and (6.11). We have

explicitly (Ψ depends on p, e, u and ξ)

∂eΨ = 0, p2Ψ = 0, (∂2
ξ + u2)Ψ = 0,

p · ∂ξΨ = 0, p · ξΨ = 0,
(

ξ · ∂ξ − u∂u +
3

2

)

Ψ = 0, (ξ2 + ∂2
u)Ψ = 0. (7.22)

We find

∂eΨ = 0
(

ξ · ∂ξ − u∂u + 3
2

)

Ψ = 0







⇒ Ψ = u
3

2 Φ(p, uξ), (7.23)

and

p · ξΨ = 0 ⇒ Φ(p,w) = δ(p · w)φ(p,w), wµ ≡ uξµ, (7.24)

and

(ξ2 + ∂2
u)Ψ = 0 ⇔

(

w2 + (w · ∂w)2 − 1

4

)

φ(p,w) = 0. (7.25)
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If we set

φ(p,w) ≡ e±i
√

w2

φ̃(p,w), (7.26)

then the equation (7.25) may be simplified to
(

w · ∂w +
1

2

)

φ̃(p,w) = 0. (7.27)

The solution may be written as

φ̃(p,w) =
∑

n

(w2)−
n

2
− 1

4 φn(p,w), φn(p,w) =
∑

n

1

n!
φµ1···µn

(p)wµ1 · · ·wµn . (7.28)

The condition p2Ψ = 0 means that there is a factor δ(p2) in φn(p,w). The fourth condition

in (7.22) leads to Lorentz conditions:

p · ∂ξΨ = 0 ⇔ δ(p · w)p · ∂wφ(p,w) = 0 ⇔
δ(p · w)p · ∂wφn(p,w) = 0 ⇔ pµ1φµ1···µn

(p) = 0. (7.29)

The last condition in (7.22) yields:

(∂2
ξ + u2)Ψ = 0 ⇔ (∂2

w + 1)δ(p · w)φ(p,w) = 0

⇔ 2δ′(p · w)p · ∂wφ(p,w) + δ(p · w)(∂2
w + 1)φ(p,w) = 0

⇔ 2δ′(p · w)p · ∂wφ̃(p,w) + δ(p · w)∂2
wφ̃(p,w) = 0, (7.30)

where (7.26) is inserted in the last equality. If ∂2
wφn = 0 and p ·∂wφn(p,w) = 0 would have

been allowed then we would have got the standard equations for massless particles with

higher spins. However, inserting (7.28) into (7.30) we find

2δ′(p · w)
∑

n

(w2)−
n

2 p · ∂wφn(p,w) +

+δ(p · w)
∑

n

(w2)−
n

2
−1

(

w2∂2
w − n2 +

1

4

)

φn(p,w) = 0, (7.31)

which we do not know how to solve.

7.4 Covariant quantization of the rigid particle model of appendix A

The covariant Dirac quantization of the rigid particle model [21] treated in appendix A

is given by the conditions (7.1) where χ̂i are the hermitian operator expressions of χi in

appendix A. We have explicitly

p2Ψ(p, ξ) = 0,

(

∂2
ξ +

α2

ξ2

)

Ψ(p, ξ) = 0, p · ∂ξΨ(p, ξ) = 0,

p · ξΨ(p, ξ) = 0,
(

ξ · ∂ξ + 2
)

Ψ(p, ξ) = 0. (7.32)

We solve these conditions step-wise as follows:

p · ξΨ(p, ξ) = 0 ⇒ Ψ(p, ξ) = δ(p · ξ)Φ(p, ξ). (7.33)
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The last equation in (7.32) implies then

(

ξ · ∂ξ + 1
)

Φ(p, ξ) = 0, (7.34)

which has the solution

Φ(p, ξ) =

∞
∑

n=0

1

(ξ2)
n

2
+ 1

2

Φn(p, ξ),

Φn(p, ξ) =
1

n!
Φµ1···µn

(p)ξµ1 · · · ξµn . (7.35)

The condition p2Φ = 0 implies Φµ1···µn
(p) = δ(p2)φµ1···µn

(p). Furthermore, we have

p · ∂ξΨ(p, ξ) = 0 ⇒ p · ∂ξΦn(p, ξ) = 0. (7.36)

The remaining second condition in (7.32) yields finally

∂2
ξ Φn(p, ξ) = 0, (7.37)

and

α =
√

n2 − 1. (7.38)

Conditions (7.36) and (7.37) (Lorentz condition and tracelessness) together with the Klein-

Gordon equation are the appropriate conditions for massless tensor fields describing integer

spins particles. The quantization condition (7.38) have nontrivial solutions only for n ≥ 2.

This result almost agrees with the noncovariant result α = n found in [21].

8. Conclusions

In this paper we have revisited the higher order model for the infinite spin particle proposed

and treated in [7]. In section 2 we generalized the derivation of this model. We showed

that the same higher order model also follows from a more general class of elementary

constraints than those considered in [7, 9, 10]. This class of constraints were shown to be

allowed by the Poincaré invariants p2 = 0, and w2 = Ξ2, and to be first class constraints

in Dirac’s classification. They were also shown to follow from a canonical transformation

of the original simple constraints accompanied by a redefinition of one of the constraints

which neither affects the constraint surface nor the gauge algebra.

We have proposed a general procedure to rewrite a given higher order Lagrangian

as a first order one involving new variables and Lagrange multipliers. Such a first order

Lagrangian has then a Hamiltonian formulation in the generalized Dirac sense. However,

this procedure is not unique which means that there always exist several different Hamil-

tonian formulations to any given higher order Lagrangian, a difference that depends on

how the auxiliary variables are defined. Ostrogradski’s Hamiltonian formulation is only

one choice. For the infinite spin particle model the considered Hamiltonian formulations

differ by canonical transformations together with a reshuffling of the constraints. Even the

gauge algebra was shown to deviate.

– 22 –



J
H
E
P
0
5
(
2
0
0
6
)
0
1
8

A consistent quantization of a higher order theory requires that the same physical

results must follow from whatever choice of Hamiltonian one starts from. In this sense we

have found a consistent covariant quantization of the infinite spin particle model in the

form of a Dirac quantization. This quantization differs from the proposed quantization

in [7]. (We have also quantized a supersymmetric version of the model proposed in [7].)

We have given a general procedure to derive gauge invariances for any higher order

model. It starts from one of the choices of Hamiltonian formulations and makes use of the

inverse Noether theorem (see appendix B). For the infinite spin particle model we explicitly

verified that the same results follow from all the considered Hamiltonian formulations. This

method is also applied to the rigid particle model given in [21] in appendix A, and to a new

higher order model for a spinning particle in the standard massless representation, p2 = 0,

w2 = 0. (The latter model is proposed here but its possibility was discussed in [7].) We

have also considered the covariant quantization of these two models.

A. The rigid particle

If we put e = 1 in our infinite spin particle model (3.3) we get the Lagrangian (cf the rigid

particle [22])

L =
√

ẍ2 + Ξ. (A.1)

In [12] this Lagrangian was treated for Ξ = 0 and shown to be connected to Wigner’s

continuous spin representation. Another way to make this Lagrangian reparametrization

invariant is to replace dt by
√
−ẋ2dτ in which case we get the massive rigid particle model

in [22] (Ξ leads then to a mass term). However, for Ξ = 0 it is massless. Multiplying by

a constant, α, we get then in the massless case the reparametrization invariant Lagrangian

L =
α

ẋ2

√

ẍ2ẋ2 − (ẋ · ẍ)2, (A.2)

which describes a massless particle with spin [21]. In this reference it was also considered

to be a particle moving faster than light, i.e. ẋ2 > 0. A first order Ostrogradski form of

(A.2) is

L =
α

ξ2

√

ξ̇2ξ2 − (ξ · ξ̇)2 + p · (ẋ − ξ). (A.3)

This Lagrangian implies

πµ =
∂L

∂ξ̇µ
=

α

ξ2

√

ξ̇2ξ2 − (ξ · ξ̇)2

(

ξ̇µξ2 − ξµ(ξ̇ · ξ)
)

, (A.4)

by means of which we obtain the Hamiltonian

H = p · ẋ + π · ξ̇ − L = p · ξ. (A.5)

The expression (A.4) gives also rise to the primary constraints

χ2 =
1

2

(

π2 − α2

ξ2

)

, χ5 = π · ξ. (A.6)
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Hence, we have the total Hamiltonian

Htot = p · ξ + λ2χ2 + λ5χ5. (A.7)

Note that

L′ = p · ẋ + π · ξ̇ − Htot =
1

2λ2
(ξ̇ − λ5ξ)

2 +
λ2α

2

2ξ2
+ p · (ẋ − ξ) (A.8)

after inserting π = (ξ̇ − λ5ξ)/λ2 obtained from ξ̇ = {ξ,Htot}. The Lagrangians (A.3) and

(A.8) are equivalent: Varying λ2 and λ5 in (A.8) yields the equations

λ2 =
1

α

√

ξ2(ξ̇ − λ5ξ)2, λ5 =
ξ · ξ̇
ξ2

, (A.9)

which when inserted into (A.8) reproduces (A.3). A Dirac consistency check of the primary

constraints (A.6) (χ̇i = 0) leads now to the secondary constraints

χ3 = −p · π, χ4 = p · ξ, (A.10)

and the tertiary constraint

χ1 =
1

2
p2. (A.11)

(Our notation is slightly different from those in [21] since we want to emphasize the sim-

ilarity to the previous models.) The Poisson algebra of these constraints agree with the

algebra of the infinite spin particle obtained from the Hamiltonian formulation of its first

order Ostrogradski form in (3.9) except for the relation

{χ2, χ3} = − α2

(ξ2)2
χ4, (A.12)

which is zero for the infinite spin particle.

The gauge invariance of the original higher order Lagrangian (A.2) may now be ob-

tained by means of the general procedure in appendix B. With the ansatz G = βiχi for

the gauge generator, we find from the condition Ġ|χ2,5=0 = 0 the expression (also here we

have two independent gauge parameters: β1 and β4)

G = β1χ1 +

(

−1

2
λ5β̇1 + λ2β4 +

1

2
β̈1

)

χ2 −
1

2
β̇1χ3 + β4χ4 +

+

(

−1

2
λ2

α2

(ξ2)2
β̇1 + λ5β4 + β̇4

)

χ5. (A.13)

This G not only determine the gauge transformations for the first order Ostrogradski form

(A.3), but also of the original higher order Lagrangian (A.2). Within the Hamiltonian

formulation of (A.3) we have e.g.

δxµ = {xµ, G} = β1p
µ +

1

2
β̇1π

µ + β4ξ
µ. (A.14)
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In order to be the gauge transformations for the Lagrangian (A.2) we have to insert the

equations that determine p, π, and ξ. We get (ξ = ẋ)

pµ =
∂L

∂ẋµ
− ∂τ

∂L

∂ẍµ
= αWµ − α∂τΠµ,

πµ =
∂L

∂ẍµ
= αΠµ, (A.15)

where L is given by (A.2) and where

W µ ≡ 1

(ẋ2)2
√

ẋ2ẍ2 − (ẋ · ẍ)2

(

2ẋµ(ẋ · ẍ)2 − ẍµẋ2(ẋ · ẍ) − ẋµẋ2ẍ2
)

Πµ ≡ 1

ẋ2
√

ẍ2ẋ2 − (ẋ · ẍ)2

(

ẍµẋ2 − ẋµ(ẋ · ẍ)

)

. (A.16)

Notice that

Π2 =
1

ẋ2
, W 2 =

ẍ2

(ẋ2)2
, W · Π = −(ẋ · ẍ)

(ẋ2)2
=

1

2
∂τ

(

1

ẋ2

)

,

Π · ẋ ≡ 0, W · ẋ = − 1

ẋ2

√

ẍ2ẋ2 − (ẋ · ẍ)2,

Π · ẍ =
1

ẋ2

√

ẍ2ẋ2 − (ẋ · ẍ)2, W · ẍ = −2(ẋ · ẍ)

(ẋ2)2

√

ẍ2ẋ2 − (ẋ · ẍ)2,

(W − ∂τΠ) · W = 0, (W − ∂τΠ) · Π = 0. (A.17)

This implies that the Hamiltonian constraints reduce to

χ1 =
1

2
p2 =

1

2
α2

(

W − ∂τΠ)2 =
1

2
α2

(

− ẍ2

(ẋ)2
+ (∂τΠ)2

)

,

χ2 = χ3 = χ4 = χ5 = 0. (A.18)

The gauge transformations obtained from (A.14) are:

δxµ = {xµ, G} = β1α(W − ∂τΠ)µ +
1

2
β̇1αΠµ + β4ẋ

µ. (A.19)

Indeed, we find for the Lagrangian (A.2)

δL = ∂τf, f = αβ4L +
1

2
α2β̈1Π

2 +
1

2
α2β̇1Π · ∂τΠ +

3

2
α2β1(−W 2 + (∂τΠ)2), (A.20)

yielding the conserved quantity

g =
1

2
β1α

2

(

− ẍ2

(ẋ)2
+ (∂τΠ)2

)

= G|p,π,ξ, (A.21)

where the last index means that the equations of motions has to be used to determine p,

π and ξ. (G is given by (A.13) and (A.18) is used.) The equations of motion from (A.2)

is ṗ = 0 with p given by (A.15). Since (A.15) implies p · ẋ ≡ 0 these two equations imply

p · ẍ ≡ 0, p · ...
x ≡ 0 etc, which in turns implies p2 = 0. Hence, the equations of motion

yield g = 0 as it should for a gauge theory. The gauge transformations in the rigid particle

model has also been treated in [23].

– 25 –



J
H
E
P
0
5
(
2
0
0
6
)
0
1
8

B. Some general properties of higher order theories

Here we review some general properties of higher order theories and add some of our

procedures in the text expressed in more general terms. For simplicity we only give formulas

for the most simple theory. However, their generalizations (including field theory) are

essentially straight-forward.

Consider a general Lagrangian of order N depending on one variable q(t) and time t,

i.e. L(q, q̇, q̈, . . . ,
(N)
q , t). It may be an arbitrary function which yields a consistent set of

equations of motion, i.e. we do not distinguish beween regular and singular Lagrangians.

A general local variation δ of L yields (δq̇ = ∂tδq etc)

δL =

N
∑

n=0

δ
(n)
q

∂L

∂
(n)
q

= δq

(

∂L

∂q
− ∂tp

)

+ ∂ta, (B.1)

where

a = δq p +

N−1
∑

n=1

δ
(n)
q πn,

p =
N−1
∑

r=0

(−∂t)
r ∂L

∂
(r+1)

q

,

πn =

N−n−1
∑

r=0

(−∂t)
r ∂L

∂
(n+r+1)

q

, n = 1, . . . , N − 1. (B.2)

Requiring δS (S =
∫

Ldt the action) to depend only on the endpoints in t yields the

Euler-Lagrange equations

∂L

∂q
− ∂tp = 0. (B.3)

If a special variation δ̄ yields

δ̄L = ∂tf, (B.4)

then there is a conserved quantity, g, given by (Noether’s theorem)

g = a − f = δ̄q p +

N−1
∑

n=1

δ̄
(n)
q πn − f. (B.5)

This follows from (B.1) and (B.4).

In [14] Ostrogradski gave a Hamiltonian formulation of L in terms of canonical conju-

gate variables q, p and ξn, πn where the new variables ξn are defined by

ξn =
(n)
q , n = 1, . . . , N − 1. (B.6)
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The Hamiltonian is then

H =

[

cf q̇p +

N−1
∑

n=1

ξ̇nπn − L

]

= ξ1p +

N−2
∑

n=1

ξn+1πn + ξ̇N−1πN−1 − L, (B.7)

where the original Lagrangian is written as L(q, ξ1, . . . , ξN−1, ξ̇N−1, t), and where πN−1 =

∂L/∂ξ̇N−1 eliminates ξ̇N−1 from H and possibly generates constraints. Note that p and

πn are independent variables here. This procedure is better formulated as a procedure

to rewrite the original N th order Lagrangian as a first order one by means of Lagrange

multipliers [15, 16]

L(q, q̇, q̈, . . . ,
(N)
q , t) →

L(q, ξ1, . . . , ξN−1, ξ̇N−1, t) + λ1(ξ1 − q̇) +

N−1
∑

n=2

λn(ξn − ξ̇n−1). (B.8)

The conventional Hamiltonian Dirac analysis [17] applies then to this equivalent first order

Lagrangian. We find e.g. the following constraints (Pn is the conjugate momentum to λn)

Pn = 0, p = −λ1, πn−1 = −λn, n = 2, . . . , N. (B.9)

These are primary second class constraints which may trivially be eliminated, and when

this is done the first order Lagrangian in (B.8) becomes (cf [15])

L(q, ξ1, . . . , ξN−1, ξ̇N−1, t) + p(q̇ − ξ1) +

N−2
∑

n=1

πn(ξ̇n − ξn+1). (B.10)

which is a phase space form where one should not try to find the conjugates to p, πn

(which are q and ξn). The Ostrogradski Hamiltonian (B.7) is now obtained by means of

the standard Legendre transformation of this Lagrangian. In the case that the original

higher order L is singular, one has in addition to derive the consistent set of constraints in

the usual fashion [17]. The above procedure shows that there always exists a Hamiltonian

formulation for any higher order theory. In fact, the situation is much more general than

that: there always exists many different Hamiltonian formulations since the procedure

described here suggests a considerable extension of Ostrogradski’s construction:

There are infinitely many different ways to rewrite the original higher order

Lagrangian as a first order one by means of Lagrange multipliers, simply since

we may introduce new variables like ξn in infinitely many different ways. To

each of these first order Lagrangians there is a Hamiltonian formulation. As a

consequence there is an infinite number of different Hamiltonian formulations to

one given higher order Lagrangian. Classically all these first order Lagrangians

and their Hamiltonian formulations are equivalent. Our examples suggest that

the different Hamiltonian formulations are related by canonical transformations.

We explicitly demonstrated this property for the infinite spin particle model in the text.

What we want to emphasize is that this property gives rise to a condition on the quanti-

zation:
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In the quantization of a higher order theory one may start from any of its first

order formulations. However, this quantization must be performed under the

restriction that it is insensitive to the differences in the Hamiltonian formula-

tions.

A considerable generalization of Ostrogradski’s formulation was given in section 2

of [19] (see also [24]). There it was shown that one may choose the new variables to be

a general point transformation of the Ostrogradski variables. It was also shown that this

leads to different Hamiltonian formulations which are related by canonical transformations.

Hamiltonian formulations related by canonical transformations we also found for the still

more general formulations which we consider for the infinite spin particle model in the text.

In [19] the different Hamiltonian formulations were considered formally different, since they

formally yields the same path integral. However, since the path integral over the higher

order Lagrangian is not well defined we consider them to be formally equivalent in the

quantum theory. This equivalence has to be carefully investigated.

Our results in the text also suggest that the gauge transformations for any gauge

model, higher order or not, may always be obtained by means of the inverse Noether

theorem formulated in terms of a Hamiltonian formulation as follows (the generalization

to field theory is straight-forward):

Using one Hamiltonian formulation we first make a general ansatz for the gen-

eral gauge generator as a linear expression in the first class constraints:

G = αmΦm + βiχi, (B.11)

where Φm = 0 are the primary first class constraints, and χi = 0 the sec-

ondary and higher, first class constraints with respect to the corresponding

first order Lagrangian1. αm and βi are gauge parameters (arbitrary infinitesi-

mal functions). We have then to require G to be conserved which amounts to

the condition

Ġ|Φm=0 = 0, (B.12)

where the time evolution of χi is determined by the total Hamiltonian which is

equal to the Hamiltonian plus a linear combination of the primary constraints.

The original Lagrangian is then invariant under the gauge transformations

δF = {F,G}, (B.13)

where all variables not involved in the Lagrangian are removed by their Hamilto-

nian equations of motion after calculating the Poisson bracket. The correspond-

ing conserved quantity, g, in the Lagrangian formulation is then either obtained

by Noether’s theorem from the relation (B.5) or directly from the above G in

(B.11) where all variables not involved in the Lagrangian are removed by their

Hamiltonian equations of motion.

1Secondary constraints are often primary with respect to the higher order Lagrangian as may be seen

from our examples.
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For ordinary first order gauge theories this method has been used for a long time. However,

for higher order theories it is less known. (For previous treatments see [20, 23]. In [20]

essentially this method is used.) For higher order theories one obtains the same gauge

transformations independent of which Hamiltonian formulation is used. We explicitly ver-

ified this in sections 4 and 5 for the infinite spin particle.
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